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Monte Carlo study of the magnetic critical properties of a two-dimensional Ising fluid
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A two-dimensional fluid of hard spheres each having a spih and interacting via short-range Ising-like
interaction is studied near the second order phase transition from the paramagnetic gas to the ferromagnetic gas
phase. Monte Carlo simulation technique and the multiple histogram data analysis were used. By measuring
the finite-size behavior of several different thermodynamic quantities, we were able to locate the transition and
estimate values of various static critical exponents. The values of expgslentnd y/ v are close to the ones
for the two-dimensional lattice Ising model. However, our result for the exponertt.35 is very different
from the one for the Ising universality clag§1063-651X%98)11702-6

PACS numbe(s): 64.70.Fx, 64.60.Fr, 05.70.Jk

[. INTRODUCTION obtained from MC simulations of the 2D spin fluid with
short-range Ising-like interactions near the second-order
Models with coupled translational and spin degrees ofphase transition from the paramagnetic gas to the ferromag-
freedom attracted recently considerable attention becauseetic gas phase far from the tricritical point. We performed
they can describe several phenomena in amorphous ferrsimulations in systems of different sizes at a constant particle
magnetg1], dilute magnetic alloys, and dipolar liquif,3].  density and for four different temperatures. We analyzed our
Spins in such systems are not localized on lattice sites but a@ata combining the multiple histogram techniqigd with
able to move. The systems with coupled spin and translafinite-size scaling(FSS [9,10] to obtain estimates for the
tional degrees of freedom exhibit a rich variety of phasecritical temperature and exponents. In the Sec. Il we describe
transitions. Their phase diagrams were determined using tH#e Ising fluid model and technical aspects of the simula-
mean spherical approximation, the mean-field theory, densitfions. Determination of critical exponents and the location of
functional methods, and Monte Car(bIC) simulation tech- the phase transition are given in Secs. Ill and IV, while Sec.
niques[1—4]. However, the critical behavior and universality V summarizes our results.
near phase transitions in these systems attracted only little
attention. In Ref[5] the critical properties of the Heisenberg Il. THE MODEL AND SIMULATION DETAILS
fluid near magnetic order-disorder transition were studied by ) . ) )
MC simulations. The obtained critical exponents differ by a W€ consider a system that consists of particles of diam-
small but significant amount from the ones for the lattice€t€r o in two-dimensional space. The internal degrees of
Heisenberg model. The spin fluid systems resemble laticdf€@dom of each particle are described by an Ising spin and
based spin models with annealed site dilution. The Blumethere is an exchange coupling between spins given by the
Capel model is an example of the lattice-based Ising modeYUkawa interaction. The system Hamiltonian is
with an annealed site dilutiof6]. The density of annealed
sites in this model is, however, not fixed but can fluctuate
around an average. H= [ : 1
The phase diagram of the two-dimensior{dD) Ising IEJ: PSS, W
fluid studied in this paper obtained within the mean-field
approximation described in Rg#] is shown in Fig. 1. For
high temperatures and low densities there exists a criticavhere the interaction potential has the following form:
line separating a paramagnetic gas phase from a ferromag-
netic gas phase. The critical line finishes at lower tempera- ,
tures at the tricritical point. A similar phase diagram was b(r)= « if r<o @)
obtained in the 2D Blume-Capel model. Recently MC simu- —K(olr)exd —(r—o)la] if r=0.
lations were used to investigate the tricritical point properties
of a 2D lIsing fluid and a 2D Blume-Capel modé]. It was
shown that both models belong to the same tricritical univer- The parametekK is the ratio of the coupling energy to the
sality class. The aim of this paper is to present the resultthermal energy. In this paper we consider the ferromagnetic
case K>0).
The MC simulations were performed at a constant particle
*Permanent address: Faculty of Physics, Technical Universitydensityp=0.4. We studied five systems with the number of
Malczewskiego 29, 26-600 Radom, Poland. particlesN equal to 128, 256, 512, 768, and 1024. The peri-
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odic boundary conditions and the minimum image convention cumulant defined abl=1—(M%*)/(3(M?)), the mean
tion were applied during simulatiorid1]. The interaction energy of the system(H), and the specific heat
potentialg(r) was cut at a distance 6.3246This value was  C,=((H?)—(H)?)/N, where(---) denotes canonical en-
chosen in order to divide the simulation cell into 16 subcellssemble average. We also consider the quantities like the de-
for the system with 256 particles. In order to speed up simurivativesdin{|M|)/dK anddin{M?)/K. In the Heisenberg fluid
lations we used the method of linked lists of neighddr|. [5] and 3D lattice Ising mod€]13] these derivatives were
We applied the same simulation algorithm as described imsed to extract the critical exponent

Ref.[3]. In the present work we have not included any long- The thermodynamic properties of a system, in a wide tem-
range correction to the cutoff procedure ag3h The maxi-  perature range, can be obtained by performing several MC
mum position displacement of particles was chosen in such simulations at different temperatures and combining them by
way that the acceptance ratio of the trial moves was arounthe application of the multiple histogram technid@g. This

0.5. The number of MC®I (Monte Carlo steps per partigle technique allows reliable extrapolation of MC results to the
discarded at the beginning of the simulation was larger thawalues ofK where the interesting positions of the maxima
10*. For each system size the simulations were performed foshown by some of the quantities defined above are located.
four values of the parametét. These values were the fol- In Figs. 2, 3, and 4 we show the dependence of quantities
lowing: K=0.48, 0.5, 0.52, and 0.54 for a system with 128(|M|), x, andU on K. The results obtained directly from
particles,K=0.48, 0.515, 0.53, and 0.54 for a system withMC simulations performed at selectdd values are also
256 particles, and =0.485, 0.515, 0.53, and 0.54 for sys- shown in these figures by points. The error bars were ob-
tems with 512 768, and 1024 particles. These valueK of tained by calculating block averages of°>1BICS/N data
were chosen because the range of temperatures where rgbeints and computing the standard deviation from these
able extrapolation of the behavior of physical quantitiesblock averages. One can notice that the multiple histogram
could be performed included positions of the maxima of speextrapolations are within calculated error bars.

cific heat and magnetic susceptibility and the position of the
phase transition in the bulk system. The data were stored at

: lll. ESTIMATES OF THE EXPONENT » AND THE
intervals of 10 MCSN and the total number of updates was

LOCATION OF THE PHASE TRANSITION

2% 10° MCSIN for everyK value.

Let us denote by the magnetization per particle of the
system defined al =(Z;Si)/N. We study critical behavior
of the following quantitieg12,13: the mean absolute value
of the magnetizatiod|M|), the magnetic susceptibility de-
fined asy=KN((M?2)—(|M|)?) the fourth-order magnetiza-

IN THE BULK SYSTEM

The critical exponent characterizing the divergence of
the correlation length near the second-order phase transition
[10] can be extracted by considering the scaling behavior of
the derivatives’In{|M|)/dK anddIin(M?)/éK [5,13]. These de-
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rivatives can easily be computed using the following iden-by any assumptions about critical exponents. For smaller
tity: systems there are corrections to FSS and the intersection
point between any two curves versusk corresponding to
systems with side lengthls andL’ depends orL and L’
(IM")) 1 [15]. In Table I we give the coordinates of intersection points
K R(<|M”|H)—(|M”|><H)). (3)  for different pairs of systems.
The values in the table have statistical errors larger than
the expected correction terms to FSS. Because of this and a
small number of systems studied, we were not able to extract
Let us denote by the length of one side of the simula- K. by the extrapolation procedures given in Rgf3]. The
tion box. In our casd =+/N/p. The dependence of these critical couplingK. and the intersection valug* we calcu-
derivatives orK has a maximum that should scale with the lated as the average from the values in the table. We obtained
system size ak*”. This method of estimation of the expo- K.=0.535-0.002 andU*=0.618+0.003. We have ex-
nent v is very convenient, because it can be done withoutluded from the average the last three rows of the table be-
any consideration of the critical coupling, in the bulk sys- ~ cause for systems with small difference in sizes even a small
tem. We show in Fig. 5 maximum values @h(|M|)/oK and  Shift in the cumulant lines can produce a considerable error
JIN{M2)/5K in systems of different sizes together with the in the coordinates of intersection points. The estimated com-

fitted straight lines. The goodness of f@s[14] areQ=0.36  MON value of the cumulant is only slightly larger than the
andQ=0.32 for the derivative of iM|) and Ir(M2> respec- value U* =0.611+0.001 obtained for the two-dimensional
tively. The slope of these lines provides estimatesifoand  '2ttice Ising mode[16].

we obtainedy=1.36+0.02 for the maxima ofIn(|M|)/K The value ofK. can also be determined from the size-
andy=1.34+ 0.02 for the maxima ofIn(M2)/dK. These val- dependent shifting of the peak of different thermodynamic

ues are higher than the value=1 in the two-dimensional quantities. In finite systems the quantities such as, e.g., the
lattice Ising model. specific heaC,,, the rrzlagnetlc susceptibility, (9<|M|>/(_9K,

The critical couplingK_ in the bulk system is usually 2N{MJ)/K, anddln(M%)/dK, have maxima as a function of
determined using the Binder fourth-order magnetization cuk [9,10,13. The Iocat!on of the maX|murKC_(L,A) dgpends
mulant crossing techniqué,10,13. Finite size scaling pre- both on th.e system S|z|e'and on the quantityA considered.
dicts that for sufficiently large systems if we plotversusk ~ FSS predicts the following dependencelqf(L,A) on the
for different choices of., these curves should have a unigue SYStem siz49,13]
intersection poinU*. The value ofK where this occurs is
the value of the critical coupling . This value is not biased K(L,A)=K.+aL " (4)
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with the omitted corrections to FSS. The constamtepends course, to different estimates Kf, that are inconsistent with
in magnitude and sign on the particular quantity consideredthe value extracted from cumulant intersection points.
In order to determin& . from this equation it is necessary to

have both an accurate estimate of the expomeand accu- IV. ESTIMATES OF EXPONENT RATIOS /v AND /v
rate values ofK.(L,A). In Fig. 6 we plot estimates of _ ) o
K(L,A) for different quantities as a function &f /", The The exponent ratigg/v can be obtained from the finite-

lines in this figure were obtained by the least square fits ofize scaling behavior dM| either atk =K or at the value
the data to Eq(4) with »=1.35, the average of previously Of K where the derivativeé(|M|)/dK has the maximum. FSS
determined values. One can notice that value§ obbtained ~ Predicts tha{M| at theseK values should obey the relation
from the fit agree well with the estimated valfle=0.535 M~L#"". Figure 7 shows the plots corresponding to this
estimated above from the cumulant intersection points. Théelation. The straight lines in this figure were obtained using
value of the exponent different from 1.35 will lead, of the least-square fitting routine. The exponght was deter-
mined from the slope of the lines. We obtained

TABLE I. The values of fourth-order magnetization cumulant Blv=0.141+0.005 Q=0.74) at KC_ and
UerosdN1.N5) and the coupling<qos{N1.N,) at the intersection A/7=0.120£0.006 Q=0.77) at the maximum of

point for different pairs of systemgN;,N,] having N; and N, 07<|M|>/f9K-

particles. The exponent ratie// v can be determined from the finite-
size scaling behavior of the maximum of the magnetic sus-
[N1,N5] Kerosd N1,N5) U crosd{N1,N5) ceptibility xmax and of the valugy(K,) of the magnetic sus-

ceptibility atK=K_. According to FSS these quantities are

(128,254 0.5327 0.6153 expected to vary with system size liké’”. Figure 8 displays
(128,513 0.5331 0.6158 the finite-size scaling behavior af,., and y(K.). We esti-
[128,768 0.5364 0.6193 mated the value of the exponent ratidr from slopes of
[128,1024 0.5358 0.6186 fitted straight lines. From valuesym. We obtained
[256,517 0.5334 0.6164 ylv=1.74+0.02 (Q=0.31), whereas from valuegK.) we
[256,768 0.5380 0.6224 obtainedy/ v=1.76+0.05 (Q=0.88).

[256,1024 0.5368 0.6209

[512,768 0.5449 0.6336 V. CONCLUSIONS

[512,1024 0.5398 0.6269

[768,1024 0.5324 0.6105 We have studied the critical behavior of the two-

dimensional Ising fluid at a densigy=0.4 near the second-
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order phase transition from the paramagnetic gas to thdiluted Ising models the pure Ising exponents. Our results
ferromagnetic gas phase. The multiple histogram techniqudisagree with this prediction and suggest a renormalization
was applied in order to combine data obtained from fourof exponents that leave@/v and y/v unchanged and
different MC simulations. The largest system we studiedchangesv. We were unable to consider large system
consisted of 1024 particles. The critical exponentas de-  sizes with good statistics to determine possible corrections to
termined from FSS behavior of the derivativele(|M|)/dK finite-size scaling. However, the presented self-consistency
and dIn(M?)/dK. We obtainedv~1.35. This value is much in the determination oK using the estimated exponent
higher than the value=1 obtained for the two-dimensional convinces one that the obtained values ofand K. are
Ising lattice model. The critical coupling. in the bulk sys-  correct.

tem was obtained by considering size-dependent shifting of A behavior similar to ours was reported in studies of the
the maxima of several quantities using the estimated value dfvo-dimensional quenched site diluted Ising mod&8].

the exponent. This value was found to be consistent with These studies suggest that theexponent and the Binder
the location of the fourth-order magnetization cumulantcumulant valudJ* increase with the degree of disorder. This
crossing points, i.e., witK.~0.535. The estimated common was interpreted as the verification of the weak universality
value of the cumulant aK=K, is U*=0.618, which is scenario[19] also seen to apply to other mod¢Ik3]. We
slightly higher than the valud&J* =0.611 obtained in the plan to study our model with different densities to see if the
two-dimensional lattice Ising model. All the cumulant inter- measured exponents approach the pure Ising values with in-
section values given in Table | are above the value 0.61%reasing density.

except the value determined for the pair of systems
[768,1024. As the statistical error increases with the system
size and considerable error is expected in the determination
of cumulant intersection points for pairs of systems with
small difference in sizes we have neglected the last three
rows of Table | in estimatingl, andU*. The ratio of critical W.K. thanks the Junta Nacional de InvestigacCient
exponents3/ v and y/v we determined from the FSS behav- fica e Tecnolgica in PortugalJNICT) for the grant under
ior of the magnetization and magnetic susceptibility. Theythe program PRAXIS XXI, and Professor S. K. Mendiratta
are consistent with values obtained in the two-dimensionalor his kind hospitality at the University of Aveiro. A.L.F.
lattice Ising model. In annealed diluted magnets the expothanks JNICT for support under PRAXIS2/2.1/FIS/299/94.
nents are renormalized if the pure specific-heat expomésit Reference$l18] and[19] were pointed out to us by Professor
positive and do not change if it is negati{E7]. As for the M. A. Santos after the first version of the paper was com-
pure lattice Ising modekk=0, we expect for the annealed pleted.
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