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Monte Carlo study of the magnetic critical properties of a two-dimensional Ising fluid

A. L. Ferreira and W. Korneta*
Departamento de Fisica, Universidade de Aveiro, 3800 Aveiro, Portugal

~Received 18 August 1997!

A two-dimensional fluid of hard spheres each having a spin61 and interacting via short-range Ising-like
interaction is studied near the second order phase transition from the paramagnetic gas to the ferromagnetic gas
phase. Monte Carlo simulation technique and the multiple histogram data analysis were used. By measuring
the finite-size behavior of several different thermodynamic quantities, we were able to locate the transition and
estimate values of various static critical exponents. The values of exponentsb/n andg/n are close to the ones
for the two-dimensional lattice Ising model. However, our result for the exponentn51.35 is very different
from the one for the Ising universality class.@S1063-651X~98!11702-6#

PACS number~s!: 64.70.Fx, 64.60.Fr, 05.70.Jk
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I. INTRODUCTION

Models with coupled translational and spin degrees
freedom attracted recently considerable attention beca
they can describe several phenomena in amorphous fe
magnets@1#, dilute magnetic alloys, and dipolar liquids@2,3#.
Spins in such systems are not localized on lattice sites bu
able to move. The systems with coupled spin and tran
tional degrees of freedom exhibit a rich variety of pha
transitions. Their phase diagrams were determined using
mean spherical approximation, the mean-field theory, den
functional methods, and Monte Carlo~MC! simulation tech-
niques@1–4#. However, the critical behavior and universali
near phase transitions in these systems attracted only
attention. In Ref.@5# the critical properties of the Heisenbe
fluid near magnetic order-disorder transition were studied
MC simulations. The obtained critical exponents differ by
small but significant amount from the ones for the latt
Heisenberg model. The spin fluid systems resemble latt
based spin models with annealed site dilution. The Blum
Capel model is an example of the lattice-based Ising mo
with an annealed site dilution@6#. The density of annealed
sites in this model is, however, not fixed but can fluctu
around an average.

The phase diagram of the two-dimensional~2D! Ising
fluid studied in this paper obtained within the mean-fie
approximation described in Ref.@4# is shown in Fig. 1. For
high temperatures and low densities there exists a crit
line separating a paramagnetic gas phase from a ferrom
netic gas phase. The critical line finishes at lower tempe
tures at the tricritical point. A similar phase diagram w
obtained in the 2D Blume-Capel model. Recently MC sim
lations were used to investigate the tricritical point propert
of a 2D Ising fluid and a 2D Blume-Capel model@7#. It was
shown that both models belong to the same tricritical univ
sality class. The aim of this paper is to present the res
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obtained from MC simulations of the 2D spin fluid wit
short-range Ising-like interactions near the second-or
phase transition from the paramagnetic gas to the ferrom
netic gas phase far from the tricritical point. We perform
simulations in systems of different sizes at a constant part
density and for four different temperatures. We analyzed
data combining the multiple histogram technique@8# with
finite-size scaling~FSS! @9,10# to obtain estimates for the
critical temperature and exponents. In the Sec. II we desc
the Ising fluid model and technical aspects of the simu
tions. Determination of critical exponents and the location
the phase transition are given in Secs. III and IV, while S
V summarizes our results.

II. THE MODEL AND SIMULATION DETAILS

We consider a system that consists of particles of dia
eter s in two-dimensional space. The internal degrees
freedom of each particle are described by an Ising spin
there is an exchange coupling between spins given by
Yukawa interaction. The system Hamiltonian is

H5(
i , j

f~r i j !SiSj , ~1!

where the interaction potential has the following form:

f~r !5H ` if r ,s

2K~s/r !exp@2~r 2s!/s# if r>s.
~2!

The parameterK is the ratio of the coupling energy to th
thermal energy. In this paper we consider the ferromagn
case (K.0).

The MC simulations were performed at a constant part
densityr50.4. We studied five systems with the number
particlesN equal to 128, 256, 512, 768, and 1024. The pe

y,
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3108 57A. L. FERREIRA AND W. KORNETA
FIG. 1. Mean-field phase dia
gram for the Ising fluid with the
coupling constantK and the den-
sity r. The line separating the
paramagnetic and ferromagnet
gas phases is given b
K51/(2pr). The point indicates
the location of the phase transitio
for r50.4 obtained in this pape
from MC simulations.
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odic boundary conditions and the minimum image conv
tion were applied during simulations@11#. The interaction
potentialf(r ) was cut at a distance 6.3246s. This value was
chosen in order to divide the simulation cell into 16 subce
for the system with 256 particles. In order to speed up sim
lations we used the method of linked lists of neighbors@11#.
We applied the same simulation algorithm as described
Ref. @3#. In the present work we have not included any lon
range correction to the cutoff procedure as in@3#. The maxi-
mum position displacement of particles was chosen in su
way that the acceptance ratio of the trial moves was aro
0.5. The number of MCS/N ~Monte Carlo steps per particle!
discarded at the beginning of the simulation was larger t
104. For each system size the simulations were performed
four values of the parameterK. These values were the fo
lowing: K50.48, 0.5, 0.52, and 0.54 for a system with 1
particles,K50.48, 0.515, 0.53, and 0.54 for a system w
256 particles, andK50.485, 0.515, 0.53, and 0.54 for sy
tems with 512 768, and 1024 particles. These values oK
were chosen because the range of temperatures where
able extrapolation of the behavior of physical quantit
could be performed included positions of the maxima of s
cific heat and magnetic susceptibility and the position of
phase transition in the bulk system. The data were store
intervals of 10 MCS/N and the total number of updates w
23106 MCS/N for everyK value.

Let us denote byM the magnetization per particle of th
system defined asM5(( iSi)/N. We study critical behavior
of the following quantities@12,13#: the mean absolute valu
of the magnetization̂uM u&, the magnetic susceptibility de
fined asx5KN(^M2&2^uM u&2) the fourth-order magnetiza
-
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tion cumulant defined asU512^M4&/(3^M2&), the mean
energy of the system^H&, and the specific hea
CV5(^H2&2^H&2)/N, where ^•••& denotes canonical en
semble average. We also consider the quantities like the
rivatives] ln^uMu&/]K and] ln^M2&/]K. In the Heisenberg fluid
@5# and 3D lattice Ising model@13# these derivatives were
used to extract the critical exponentn.

The thermodynamic properties of a system, in a wide te
perature range, can be obtained by performing several
simulations at different temperatures and combining them
the application of the multiple histogram technique@8#. This
technique allows reliable extrapolation of MC results to t
values ofK where the interesting positions of the maxim
shown by some of the quantities defined above are loca
In Figs. 2, 3, and 4 we show the dependence of quanti
^uM u&, x, and U on K. The results obtained directly from
MC simulations performed at selectedK values are also
shown in these figures by points. The error bars were
tained by calculating block averages of 105 MCS/N data
points and computing the standard deviation from th
block averages. One can notice that the multiple histogr
extrapolations are within calculated error bars.

III. ESTIMATES OF THE EXPONENT n AND THE
LOCATION OF THE PHASE TRANSITION

IN THE BULK SYSTEM

The critical exponentn characterizing the divergence o
the correlation length near the second-order phase trans
@10# can be extracted by considering the scaling behavio
the derivatives] ln^uMu&/]K and] ln^M2&/]K @5,13#. These de-
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57 3109MONTE CARLO STUDY OF THE MAGNETIC CRITICAL . . .
FIG. 2. The magnetization ver
sus the coupling constantK for
the five system sizes. The numbe
of particles in the system is indi
cated. The points are average
over individual simulations. The
curves result from the multiple
histogram technique. Error bar
are smaller than the symbol size

FIG. 3. The magnetic suscept
bility vs the coupling constantK
for the five system sizes. The
number of particles in the system
is indicated. The points are aver
ages over individual simulations
The curves result from the mul
tiple histogram technique. Erro
bars are omitted when smalle
than the symbol size.
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FIG. 4. The fourth-order mag-
netization cumulant vs the cou
pling constantK for the five sys-
tem sizes. The number of particle
in the system is indicated. The
points are averages over ind
vidual simulations. The curves re
sult from the multiple histogram
technique. Error bars are omitte
when smaller than the symbo
size.
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rivatives can easily be computed using the following ide
tity:

]^uMnu&
]K

52
1

K
~^uMnuH&2^uMnu&^H&!. ~3!

Let us denote byL the length of one side of the simula
tion box. In our caseL5AN/r. The dependence of thes
derivatives onK has a maximum that should scale with t
system size asL1/n. This method of estimation of the expo
nent n is very convenient, because it can be done with
any consideration of the critical couplingKc in the bulk sys-
tem. We show in Fig. 5 maximum values of] ln^uMu&/]K and
] ln^M2&/]K in systems of different sizes together with th
fitted straight lines. The goodness of fitsQ @14# areQ50.36
andQ50.32 for the derivative of ln̂uMu& and ln̂M2&, respec-
tively. The slope of these lines provides estimates forn, and
we obtainedn51.3660.02 for the maxima of] ln^uMu&/]K
andn51.3460.02 for the maxima of] ln^M2&/]K. These val-
ues are higher than the valuen51 in the two-dimensiona
lattice Ising model.

The critical couplingKc in the bulk system is usually
determined using the Binder fourth-order magnetization
mulant crossing technique@5,10,13#. Finite size scaling pre-
dicts that for sufficiently large systems if we plotU versusK
for different choices ofL, these curves should have a uniq
intersection pointU* . The value ofK where this occurs is
the value of the critical couplingKc . This value is not biased
-

t

-

by any assumptions about critical exponents. For sma
systems there are corrections to FSS and the intersec
point between any two curvesU versusK corresponding to
systems with side lengthsL and L8 depends onL and L8
@15#. In Table I we give the coordinates of intersection poin
for different pairs of systems.

The values in the table have statistical errors larger t
the expected correction terms to FSS. Because of this a
small number of systems studied, we were not able to ext
Kc by the extrapolation procedures given in Ref.@13#. The
critical couplingKc and the intersection valueU* we calcu-
lated as the average from the values in the table. We obta
Kc50.53560.002 and U* 50.61860.003. We have ex-
cluded from the average the last three rows of the table
cause for systems with small difference in sizes even a sm
shift in the cumulant lines can produce a considerable e
in the coordinates of intersection points. The estimated co
mon value of the cumulant is only slightly larger than t
value U* 50.61160.001 obtained for the two-dimensiona
lattice Ising model@16#.

The value ofKc can also be determined from the siz
dependent shifting of the peak of different thermodynam
quantities. In finite systems the quantities such as, e.g.,
specific heatCV , the magnetic susceptibilityx, ]^uM u&/]K,
] ln^uMu&/]K, and] ln^M2&/]K, have maxima as a function o
K @9,10,13#. The location of the maximumKc(L,A) depends
both on the system sizeL and on the quantityA considered.
FSS predicts the following dependence ofKc(L,A) on the
system size@9,13#:

Kc~L,A!5Kc1aL21/n ~4!
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FIG. 5. The plot of the maxima of] ln^uMu&/]K
and] ln^M2&/]K vs the linear system sizeL. Error
bars are smaller than the symbol size. T
straight lines are fits to the data. Their slope
1/n. The obtained values of the exponentn are
indicated.
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with the omitted corrections to FSS. The constanta depends
in magnitude and sign on the particular quantity consider
In order to determineKc from this equation it is necessary t
have both an accurate estimate of the exponentn and accu-
rate values ofKc(L,A). In Fig. 6 we plot estimates o
Kc(L,A) for different quantities as a function ofL21/n. The
lines in this figure were obtained by the least square fits
the data to Eq.~4! with n51.35, the average of previousl
determined values. One can notice that values ofKc obtained
from the fit agree well with the estimated valueKc50.535
estimated above from the cumulant intersection points.
value of the exponentn different from 1.35 will lead, of

TABLE I. The values of fourth-order magnetization cumula
Ucross(N1 ,N2) and the couplingKcross(N1 ,N2) at the intersection
point for different pairs of systems@N1 ,N2# having N1 and N2

particles.

@N1 ,N2# Kcross(N1 ,N2) Ucross(N1 ,N2)

@128,256# 0.5327 0.6153
@128,512# 0.5331 0.6158
@128,768# 0.5364 0.6193
@128,1024# 0.5358 0.6186
@256,512# 0.5334 0.6164
@256,768# 0.5380 0.6224
@256,1024# 0.5368 0.6209
@512,768# 0.5449 0.6336
@512,1024# 0.5398 0.6269
@768,1024# 0.5324 0.6105
d.

f

e

course, to different estimates ofKc that are inconsistent with
the value extracted from cumulant intersection points.

IV. ESTIMATES OF EXPONENT RATIOS b/n AND g/n

The exponent ratiob/n can be obtained from the finite
size scaling behavior ofuM u either atK5Kc or at the value
of K where the derivative]^uM u&/]K has the maximum. FSS
predicts thatuM u at theseK values should obey the relatio
M;L2b/n. Figure 7 shows the plots corresponding to th
relation. The straight lines in this figure were obtained us
the least-square fitting routine. The exponentb/n was deter-
mined from the slope of the lines. We obtaine
b/n50.14160.005 (Q50.74) at Kc and
b/n50.12060.006 (Q50.77) at the maximum of
]^uM u&/]K.

The exponent ratiog/n can be determined from the finite
size scaling behavior of the maximum of the magnetic s
ceptibility xmax and of the valuex(Kc) of the magnetic sus-
ceptibility at K5Kc . According to FSS these quantities a
expected to vary with system size likeLg/n. Figure 8 displays
the finite-size scaling behavior ofxmax andx(Kc). We esti-
mated the value of the exponent ratiog/n from slopes of
fitted straight lines. From valuesxmax we obtained
g/n51.7460.02 (Q50.31), whereas from valuesx(Kc) we
obtainedg/n51.7660.05 (Q50.88).

V. CONCLUSIONS

We have studied the critical behavior of the tw
dimensional Ising fluid at a densityr50.4 near the second
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3112 57A. L. FERREIRA AND W. KORNETA
FIG. 6. Size dependence of th
location of maxima Kc(L) for
several quantities indicated in th
figure in finite systems containing
128, 256, 512, 768, and 1024 pa
ticles. The straight lines are fits to
Eq. ~ 4! with the exponent
n51.35. The estimated values o
the critical couplingKc in the bulk
system obtained from these fit
are shown for each quantity.

FIG. 7. The plot of the magne
tization at the estimated value o
the critical coupling in the bulk
system Kc50.535 and at the
maximum of ]^uM u&/]K, vs the
linear system sizeL. The straight
lines are fits to the data. Thei
slope is2b/n. The obtained val-
ues of the ratio of exponentsb/n
are indicated.
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FIG. 8. The plot of the mag-
netic susceptibility at the esti
mated value of the critical cou
pling in the bulk system
Kc50.535 and at the maximum
vs the linear system sizeL. The
straight lines are fits to the data
Their slope isg/n. The obtained
values of the ratio of exponent
g/n are indicated.
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order phase transition from the paramagnetic gas to
ferromagnetic gas phase. The multiple histogram techni
was applied in order to combine data obtained from fo
different MC simulations. The largest system we stud
consisted of 1024 particles. The critical exponentn was de-
termined from FSS behavior of the derivatives] ln^uMu&/]K
and ] ln^M2&/]K. We obtainedn'1.35. This value is much
higher than the valuen51 obtained for the two-dimensiona
Ising lattice model. The critical couplingKc in the bulk sys-
tem was obtained by considering size-dependent shifting
the maxima of several quantities using the estimated valu
the exponentn. This value was found to be consistent wi
the location of the fourth-order magnetization cumula
crossing points, i.e., withKc'0.535. The estimated commo
value of the cumulant atK5Kc is U* 50.618, which is
slightly higher than the valueU* 50.611 obtained in the
two-dimensional lattice Ising model. All the cumulant inte
section values given in Table I are above the value 0.
except the value determined for the pair of syste
@768,1024#. As the statistical error increases with the syst
size and considerable error is expected in the determina
of cumulant intersection points for pairs of systems w
small difference in sizes we have neglected the last th
rows of Table I in estimatingKc andU* . The ratio of critical
exponentsb/n andg/n we determined from the FSS beha
ior of the magnetization and magnetic susceptibility. Th
are consistent with values obtained in the two-dimensio
lattice Ising model. In annealed diluted magnets the ex
nents are renormalized if the pure specific-heat exponenta is
positive and do not change if it is negative@17#. As for the
pure lattice Ising modela50, we expect for the anneale
e
e
r
d

of
of

t

1
s

on

e

y
al
-

diluted Ising models the pure Ising exponents. Our res
disagree with this prediction and suggest a renormaliza
of exponents that leavesb/n and g/n unchanged and
changes n. We were unable to consider large syste
sizes with good statistics to determine possible correction
finite-size scaling. However, the presented self-consiste
in the determination ofKc using the estimated exponentn
convinces one that the obtained values ofn and Kc are
correct.

A behavior similar to ours was reported in studies of t
two-dimensional quenched site diluted Ising model@18#.
These studies suggest that then exponent and the Binde
cumulant valueU* increase with the degree of disorder. Th
was interpreted as the verification of the weak universa
scenario@19# also seen to apply to other models@18#. We
plan to study our model with different densities to see if t
measured exponents approach the pure Ising values with
creasing density.
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